Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
1.
BMC Plant Biol ; 24(1): 101, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331759

RESUMO

BACKGROUND: The cultivation of bananas encounters substantial obstacles, particularly due to the detrimental effects of cold stress on their growth and productivity. A potential remedy that has gained attention is the utilization of ethyl mesylate (EMS)-induced mutagenesis technology, which enables the creation of a genetically varied group of banana mutants. This complex procedure entails subjecting the mutants to further stress screening utilizing L-Hyp in order to identify those exhibiting improved resistance to cold. This study conducted a comprehensive optimization of the screening conditions for EMS mutagenesis and L-Hyp, resulting in the identification of the mutant cm784, which exhibited remarkable cold resistance. Subsequent investigations further elucidated the physiological and transcriptomic responses of cm784 to low-temperature stress. RESULTS: EMS mutagenesis had a substantial effect on banana seedlings, resulting in modifications in shoot and root traits, wherein a majority of seedlings exhibited delayed differentiation and limited elongation. Notably, mutant leaves displayed altered biomass composition, with starch content exhibiting the most pronounced variation. The application of L-Hyp pressure selection aided in the identification of cold-resistant mutants among seedling-lethal phenotypes. The mutant cm784 demonstrated enhanced cold resistance, as evidenced by improved survival rates and reduced symptoms of chilling injury. Physiological analyses demonstrated heightened activities of antioxidant enzymes and increased proline production in cm784 when subjected to cold stress. Transcriptome analysis unveiled 946 genes that were differentially expressed in cm784, with a notable enrichment in categories related to 'Carbohydrate transport and metabolism' and 'Secondary metabolites biosynthesis, transport, and catabolism'. CONCLUSION: The present findings provide insights into the molecular mechanisms that contribute to the heightened cold resistance observed in banana mutants. These mechanisms encompass enhanced carbohydrate metabolism and secondary metabolite biosynthesis, thereby emphasizing the adaptive strategies employed to mitigate the detrimental effects induced by cold stress.


Assuntos
Musa , Musa/metabolismo , Metanossulfonato de Etila/metabolismo , Metanossulfonato de Etila/farmacologia , Biomassa , Perfilação da Expressão Gênica , Mutagênese , Fenótipo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas
2.
Food Funct ; 15(5): 2497-2523, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38334749

RESUMO

The lack of studies evaluating the chemical responses of kombucha microorganisms when exposed to plants is notable in the literature. Therefore, this work investigates the chemical behaviour of 7-, 14- and 21 day-fermentation of kombucha derived from three extracts obtained from banana inflorescence, black tea, and grape juice. After the acquisition of UPLC-ESI-MS data, GNPS molecular networking, MS-Dial, and MS-Finder were used to chemically characterize the samples. The microbial chemical responses were enzymatic hydrolysis, oxidation, and biosynthesis. The biosynthesis was different among the kombucha samples. In fermented black tea, gallic and dihydrosinapic acids were found as hydrolysis products alongside a sugar-derived product namely 7-(α-D-glucopyranosyloxy)-2,3,4,5,6-pentahydroxyheptanoic acid. The sphingolipids, safingol and cedefingol alongside capryloyl glycine and palmitoyl proline were identified. In fermented grapes, sugar degradation and chemical transformation products were detected together with three cell membrane hopanoids characterized as hydroxybacteriohopanetetrol cyclitol ether, (Δ6 or Δ11)-hydroxybacteriohopanetetrol cyclitol ether, and methyl (Δ6 or Δ11)-hydroxybacteriohopanetetrol cyclitol. The fermented banana blossom showed the presence of methyl (Δ6 or Δ11)-hydroxybacteriohopanetetrol cyclitol together with sphingofungin B, sphinganine and other fatty acid derivatives. Parts of these samples were tested for their inhibition against α-glucosidase and their antioxidant effects. Except for the 14-day fermented extracts, other black tea extracts showed significant inhibition of α-glucosidase ranging from 42.5 to 42.8%. A 14-day fermented extract of the banana blossom infusion showed an inhibition of 29.1%, while grape samples were less active than acarbose. The 21-day fermented black tea extract showed moderate antioxidant properties on a DPPH-based model with an EC50 of 5.29 ± 0.10 µg mL-1, while the other extracts were weakly active (EC50 between 80.76 and 168.12 µg mL-1).


Assuntos
Camellia sinensis , Ciclitóis , Musa , Vitis , Chá/química , Vitis/metabolismo , Musa/metabolismo , Fermentação , alfa-Glucosidases/metabolismo , Camellia sinensis/metabolismo , Antioxidantes/metabolismo , Flores/química , Açúcares , Extratos Vegetais/farmacologia , Éteres
3.
Food Chem ; 442: 138494, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266413

RESUMO

Climacteric bananas are susceptible to endogenous ethylene and temperature, resulting in dehydration, accelerated senescence and deterioration. The widely-used plastic cling films is particularly complicated due to their high consumption and non-degradability. Herein, this study proposed to fabricate a carboxymethyl cellulose/polyvinyl alcohol/pyrazoic acid (CPP) hydrogel for postharvest banana preservation. The hydrogel demonstrated excellent potential as a packaging film, including natural degradability (complete degradation within 50 days), high tensile performance, transparent visibility and biosafety. As a validation experiment, bananas in a 30 °C environment confirmed the effectiveness of CPP hydrogels in banana postharvest preservation. Compared with the blank control and CP hydrogel, CPP packaging film delayed the processes of browning, dehydration, softening, nutrients loss, ripening and senescence in bananas, thereby maintaining their commercial value. Accordingly, this study demonstrates the potential of hydrogel materials as an alternative strategy to climacteric fruit preservation and plastic film.


Assuntos
Climatério , Musa , Musa/metabolismo , Hidrogéis/metabolismo , Desidratação , Embalagem de Produtos , Embalagem de Alimentos
4.
J Exp Bot ; 75(8): 2470-2480, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38243384

RESUMO

Needle-like calcium oxalate crystals called raphides are unique structures in the plant kingdom. Multiple biomacromolecules work together in the regulatory and transportation pathways to form raphides; however, the mechanism by which this occurs remains unknown. Using banana (Musa spp.), this study combined in vivo methods including confocal microscopy, transmission electron microscopy, and Q Exactive mass spectrometry to identify the main biomolecules, such as vesicles, together with the compositions of lipids and proteins in the crystal chamber, which is the membrane compartment that surrounds each raphide during its formation. Simulations of the vesicle transportation process and the synthesis of elongated calcium oxalate crystals in vitro were then conducted, and the results suggested that the vesicles carrying amorphous calcium oxalate and proteins embedded in raphides are transported along actin filaments. These vesicles subsequently fuse with the crystal chamber, utilizing the proteins embedded in the raphides as a template for the final formation of the structure. Our findings contribute to the fundamental understanding of the regulation of the diverse biomacromolecules that are crucial for raphide formation. Moreover, the implications of these findings extend to other fields such as materials science, and particularly the synthesis of functionalized materials.


Assuntos
Oxalato de Cálcio , Musa , Oxalato de Cálcio/análise , Oxalato de Cálcio/química , Oxalato de Cálcio/metabolismo , Musa/metabolismo , Microscopia Eletrônica de Transmissão , Espectrometria de Massas , Transporte Biológico
5.
Plant Cell Physiol ; 65(1): 49-67, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37767757

RESUMO

As zinc finger protein transcription factors (TFs), the molecular mechanism of Cys-Cys-Cys-His (CCCH) TFs in regulating plant development, growth and stress response has been well studied. However, the roles of CCCH TFs in fruit ripening are still obscure. Herein, we report that MaCCCH33-like2 TF and its associated proteins modulate the fruit softening of 'Fenjiao' bananas. MaCCCH33-like2 interacts directly with the promoters of three genes: isoamylase2 (MaISA2), sugar transporter14-like (MaSUR14-like) and ß-d-xylosidase23 (MaXYL23), all of which are responsible for encoding proteins involved in the degradation of starch and cell wall components. Additionally, MaCCCH33-like2 forms interactions with abscisic acid-insensitive 5 (ABI5)-like and ethylene F-box protein 1 (MaEBF1), resulting in enhanced binding and activation of promoters of genes related to starch and cell wall degradation. When MaCCCH33-like2 is transiently and ectopically overexpressed in 'Fenjiao' banana and tomato fruit, it facilitates softening and ripening processes by promoting the degradation of cell wall components and starch and the production of ethylene. Conversely, the temporary silencing of MaCCCH33-like2 using virus-induced gene silencing (VIGS) inhibits softening and ripening in the 'Fenjiao' banana by suppressing ethylene synthesis, as well as starch and cell wall degradation. Furthermore, the promoter activity of MaCCCH33-like2 is regulated by MaABI5-like. Taken together, we have uncovered a novel MaCCCH33-like2/MaEBF1/MaABI5-like module that participates in fruit softening regulation in bananas.


Assuntos
Musa , Amido , Amido/metabolismo , Musa/genética , Musa/metabolismo , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Parede Celular/metabolismo , Dedos de Zinco , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Plant Biotechnol J ; 22(2): 413-426, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37816143

RESUMO

Chilling injury has a negative impact on the quantity and quality of crops, especially subtropical and tropical plants. The plant cell wall is not only the main source of biomass production, but also the first barrier to various stresses. Therefore, improving the understanding of the alterations in cell wall architecture is of great significance for both biomass production and stress adaptation. Herein, we demonstrated that the cell wall principal component cellulose accumulated during chilling stress, which was caused by the activation of MaCESA proteins. The sequence-multiple comparisons show that a cold-inducible NAC transcriptional factor MaNAC1, a homologue of Secondary Wall NAC transcription factors, has high sequence similarity with Arabidopsis SND3. An increase in cell wall thickness and cellulosic glucan content was observed in MaNAC1-overexpressing Arabidopsis lines, indicating that MaNAC1 participates in cellulose biosynthesis. Over-expression of MaNAC1 in Arabidopsis mutant snd3 restored the defective secondary growth of thinner cell walls and increased cellulosic glucan content. Furthermore, the activation of MaCESA7 and MaCESA6B cellulose biosynthesis genes can be directly induced by MaNAC1 through binding to SNBE motifs within their promoters, leading to enhanced cellulose content during low-temperature stress. Ultimately, tomato fruit showed greater cold resistance in MaNAC1 overexpression lines with thickened cell walls and increased cellulosic glucan content. Our findings revealed that MaNAC1 performs a vital role as a positive modulator in modulating cell wall cellulose metabolism within banana fruit under chilling stress.


Assuntos
Arabidopsis , Musa , Celulose/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Musa/genética , Musa/metabolismo , Frutas/genética , Frutas/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética
7.
Plant Cell Environ ; 47(4): 1128-1140, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38093692

RESUMO

High temperatures (>24°C) prevent the development of a yellow peel on bananas called green ripening, owing to the inhibition of chlorophyll degradation. This phenomenon greatly reduces the marketability of banana fruit, but the mechanisms underlining high temperature-repressed chlorophyll catabolism need to be elucidated. Herein, we found that the protein accumulation of chlorophyll catabolic enzyme MaSGR1 (STAY-GREEN 1) was reduced when bananas ripened at high temperature. Transiently expressing MaSGR1 in banana peel showed its positive involvement in promoting chlorophyll degradation under high temperature, thereby weakening green ripening phenotype. Using yeast two-hybrid screening, we identified a RING-type E3 ubiquitin ligase, MaRZF1 (RING Zinc Finger 1), as a putative MaSGR1-interacting protein. MaRZF1 interacts with and targets MaSGR1 for ubiquitination and degradation via the proteasome pathway. Moreover, upregulating MaRZF1 inhibited chlorophyll degradation, and attenuated MaSGR1-promoted chlorophyll degradation in bananas during green ripening, indicating that MaRZF1 negatively regulates chlorophyll catabolism via the degradation of MaSGR1. Taken together, MaRZF1 and MaSGR1 form a regulatory module to mediate chlorophyll degradation associated with high temperature-induced green ripening in bananas. Therefore, our findings expand the understanding of posttranslational regulatory mechanisms of temperature stress-caused fruit quality deterioration.


Assuntos
Musa , Temperatura , Musa/genética , Musa/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Int J Biol Macromol ; 258(Pt 1): 128771, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101675

RESUMO

Starch modification by annealing (ANN) and heat-moisture treatment (HMT) results in a lower crystallinity compared to native but the change of B crystalline type to A type is only observed in HMT starch. All starches possess two different digestion rate constants i.e. k1 (at rapid phase) and k2 (at slow phase) which may be linked to the preserved intact starch granule following thermal treatment. HMT starch contains higher content of slowly digestible starch (C2∞) compared to the C2∞ of the other starches. The lower enzyme binding to HMT starch (Kd value increases from 0.12 mg/mL in native starch to 0.83 mg/mL) may be linked to the increase in the degree of ordered structure of the granule surface (observed from the absorption band ratio of 1000 cm-1/1022 cm-1). The lower affinity may lead to a lower k1 value. This holds true for ANN and native starch which displays similar k1, Kd value and degree of ordered to disordered structure. Lower k2 in HMT starch compared to the corresponding k2 in the other starches may be linked to the slower enzyme diffusion into the core of starch granule due to the tightly packed structure of A crystalline type in HMT starch.


Assuntos
Musa , Amido , Amido/química , Temperatura Alta , Musa/metabolismo , Fenômenos Químicos , Digestão
9.
Int J Biol Macromol ; 253(Pt 6): 127144, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37802454

RESUMO

Sucrose, a predominant sweetener in banana (Musa acuminata) fruit, determines sweetness and consumer preferences. Although sucrose phosphate synthase (SPS) is known to catalyze starch conversion into sucrose in banana fruit during the ripening process, the SPS regulatory mechanism during ripening still demands investigation. Hence, this study discovered that the MaSPS1 expression was promoted during ethylene-mediated ripening in banana fruit. MaNAC19, recognized as the MaSPS1 putative binding protein using yeast one-hybrid screening, directly binds to the MaSPS1 promoter, thereby transcriptionally activating its expression, which was verified by transient overexpression experiments, where the sucrose synthesis was accelerated through MaNAC19-induced transcription of MaSPS1. Interestingly, MaXB3, an ethylene-inhibited E3 ligase, was found to ubiquitinate MaNAC19, making it prone to proteasomal degradation, inhibiting transactivation of MaNAC19 to MaSPS1, thereby attenuating MaNAC19-promoted sucrose accumulation. This study's findings collectively illustrated the mechanistic basis of a MaXB3-MaNAC19-MaSPS1 regulatory module controlling sucrose synthesis during banana fruit ripening. These outcomes have broadened our understanding of the regulation mechanisms that contributed to sucrose metabolism occurring in transcriptional and post-transcriptional stages, which might help develop molecular approaches for controlling ripening and improving fruit quality.


Assuntos
Frutas , Musa , Frutas/metabolismo , Musa/genética , Musa/metabolismo , Regiões Promotoras Genéticas/genética , Sacarose/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Food Res Int ; 173(Pt 2): 113415, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803753

RESUMO

Banana fruit is highly vulnerable to chilling injury (CI) during cold storage, which results in quality deterioration and commodity reduction. The purpose of this study was to investigate the membrane lipid metabolism mechanism underlying low temperature-induced CI in banana fruit. Chilling temperature significantly induced CI symptoms in banana fruit, compared to control temperature (22 °C). Using physiological experiments and transcriptomic analyses, we found that chilling temperature (7 °C) increased CI index, malondialdehyde content, and cell membrane permeability. Additionally, chilling temperature upregulated the genes encoding membrane lipid-degrading enzymes, such as lipoxygenase (LOX), phospholipase D (PLD), phospholipase C (PLC), phospholipase A (PLA), and lipase, but downregulated the genes encoding fatty acid desaturase (FAD). Moreover, chilling temperature raised the activities of LOX, PLD, PLC, PLA, and lipase, inhibited FAD activity, lowered contents of unsaturated fatty acids (USFAs) (γ-linolenic acid and linoleic acid), phosphatidylcholine, and phosphatidylinositol, but retained higher contents of saturated fatty acids (SFAs) (stearic acid and palmitic acid), free fatty acids, phosphatidic acid, lysophosphatidic acid, diacylglycerol, a lower USFAs index, and a lower ratio of USFAs to SFAs. Together, these results revealed that chilling temperature-induced chilling injury of bananas were caused by membrane integrity damage and were associated with the enzymatic and genetic manipulation of membrane lipid metabolism. These activities promoted the degradation of membrane phospholipids and USFAs in fresh bananas during cold storage.


Assuntos
Frutas , Musa , Frutas/química , Lipídeos de Membrana/análise , Lipídeos de Membrana/metabolismo , Musa/metabolismo , Armazenamento de Alimentos/métodos , Ácidos Graxos/análise , Ácidos Graxos Insaturados/análise , Lipase/metabolismo , Poliésteres/análise
11.
Chemosphere ; 344: 140290, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37758084

RESUMO

An investigation of the metabolism and transfer of imidacloprid (IMI) in banana plants and soil was performed using high-resolution mass spectrometry. Results indicated the presence of eight IMI metabolites in soil and leaves that resulted from hydroxylation of the imidazolidine ring, the reduction and loss of nitro groups, and oxidative cleavage of methylene bridges. Six metabolites, including 4/5-hydroxy IMI (4/5-hydroxy), IMI olefin (olefin), and 6-chloronicotinic acid (6-CNA), were detected in the fruits following leaf treatment, while only three were detected after soil treatment. Quantitative analysis showed that the total amount of imidacloprid and its metabolites transferred from leaves to fruits was higher than that transferred from soil to fruits. Therefore, leaf transfer was considered the main means by which IMI and its metabolites transferred to banana fruits. We found that adjuvants tank-mixed with IMI could reduce the total concentration of pesticide transfer from leaves to fruits, especially reducing the amount of metabolites transformed from the reduction and loss of nitro groups and oxidative cleavage of methylene bridges, thus reducing the pesticide residue in fruits and achieving the purpose of reducing the safety risk.


Assuntos
Inseticidas , Musa , Praguicidas , Praguicidas/análise , Musa/metabolismo , Inseticidas/análise , Solo , Neonicotinoides/metabolismo , Nitrocompostos/análise , Folhas de Planta/química , Alcenos
12.
Mol Biol Rep ; 50(11): 9061-9072, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37731027

RESUMO

BACKGROUND: The GHMP kinase gene family encompasses ATP-dependent kinases, significantly involved in the biosynthesis of isoprenes, amino acids, and metabolism of carbohydrates. Banana is a staple tropical crop that is globally consumed but known for high sensitivity to salt, cold, and drought stresses. The GHMP kinases are known to play a significant role during abiotic stresses in plants. The present study emphasizes the role of GHMP kinases in various abiotic stress conditions in banana. METHODS AND RESULTS: We identified 12 GHMP kinase (MaGHMP kinase) genes in the banana genome database and witnessed the presence of the conserved Pro-X-X-X-Gly-Leu-X-Ser-Ser-Ala domain in their protein sequences. All genes were found to be involved in ATP-binding and carried kinase activity confronting their biological roles in the isoprene (27%) and amino acid (20%) biosyntheses. The expression analysis of genes during cold, drought, and salt stress conditions in tissue culture grown banana cultivar Rasthali plants showed a significant involvement of MaGHMP kinase genes in these stress conditions. The highest expression of MaGHMP kinase3 (8.5 fold) was noted during cold stress, while MaGHMP kinase1 (25 fold and 40.01 fold) showed maximum expression during drought and salt stress conditions in leaf tissue of Rasthali. CONCLUSION: Our findings suggested that MaGHMP kinase1 (MaHSK) and MaGHMP kinase3 (MaGlcAK) could be considered promising candidates for thwarting the abiotic stresses in banana.


Assuntos
Musa , Musa/genética , Musa/metabolismo , Genoma de Planta/genética , Estresse Fisiológico/genética , Resposta ao Choque Frio , Perfilação da Expressão Gênica/métodos , Trifosfato de Adenosina , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia
13.
J Proteomics ; 288: 104994, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37598917

RESUMO

Low temperature is a crucial environmental factor limiting the productivity and distribution of banana. Ubiquitination (Kub) is one of the main posttranslational modifications (PTMs) involved in plant responses to abiotic stresses. However, little information is available on the effects of Kub on banana under cold stress. In this study, we used label-free quantification (LFQ) to identify changes in the protein expression and Kub levels in banana seedling leaves after chilling treatment. In total, 4156 proteins, 1089 ubiquitinated proteins and 2636 Kub sites were quantified. Western blot assays showed that Kub was abundant in leaves after low-temperature treatment. Our results show that the proteome and ubiquitylome were negatively correlated, indicating that Kub could be involved in the degradation of proteins in banana after chilling treatment. Based on bioinformatics analysis, low-temperature stress-related signals and metabolic pathways such as cold acclimation, glutathione metabolism, calcium signaling, and photosynthesis signaling were identified. In addition, we found that transcription factors and chromatin remodeling factors related to low-temperature stress were ubiquitinated. Overall, our work presents the first systematic analysis of the Kub proteome in banana under cold stress and provides support for future studies on the regulatory mechanisms of Kub during the cold stress response in plants. SIGNIFICANCE: Banana is a typical tropical fruit tree with poor low-temperature tolerance,however, the role of PTMs such as Kub in the cold response of banana remains unclear. This study highlights the fact that the effects of low-temperature on proteome and ubiquitylome in the banana seedling leaves, we discussed the correlation between transcriptome and proteome, ubiquitylome and proteome, and we analyzed the expression and the changes of ubiquitination levels of low-temperature related proteins and pathway after chilling treatment, and we found that transcription factors and chromatin remodeling factors related to low-temperature stress were ubiquitinated. This study provides new insights into the ubiquitination pathway of banana under cold stress.


Assuntos
Musa , Plântula , Plântula/metabolismo , Musa/metabolismo , Proteoma/metabolismo , Resposta ao Choque Frio , Fatores de Transcrição/metabolismo , Temperatura Baixa , Ubiquitinação , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
14.
Sheng Wu Gong Cheng Xue Bao ; 39(7): 2874-2896, 2023 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-37584137

RESUMO

Glutamate receptor-like (GLR) is an important class of Ca2+ channel proteins, playing important roles in plant growth and development as well as in response to biotic and abiotic stresses. In this paper, we performed genome-wide identification of banana GLR gene family based on banana genomic data. Moreover, we analyzed the basic physicochemical properties, gene structure, conserved motifs, promoter cis-acting elements, evolutionary relationships, and used real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) to verify the expression patterns of some GLR family members under low temperature of 4 ℃ and different hormone treatments. The results showed that there were 19 MaGLR family members in Musa acuminata, 16 MbGLR family members in Musa balbisiana and 14 MiGLR family members in Musa itinerans. Most of the members were stable proteins and had signal peptides, all of them had 3-6 transmembrane structures. Prediction of subcellular localization indicated that all of them were localized on the plasma membrane and irregularly distributed on the chromosome. Phylogenetic analysis revealed that banana GLRs could be divided into 3 subclades. The results of promoter cis-acting elements and transcription factor binding site prediction showed that there were multiple hormone- and stress-related response elements and 18 TFBS in banana GLR. RT-qPCR analysis showed that MaGLR1.1 and MaGLR3.5 responded positively to low temperature stress and were significantly expressed in abscisic acid/methyl jasmonate treatments. In conclusion, the results of this study suggest that GLR, a highly conserved family of ion channels, may play an important role in the growth and development process and stress resistance of banana.


Assuntos
Musa , Musa/genética , Musa/metabolismo , Filogenia , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Temperatura , Estresse Fisiológico/genética , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica
15.
Cell Rep ; 42(8): 112832, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37498740

RESUMO

The mitogen-activated protein kinase (MAPK) cascade consisting of MKKK, MKK, and MPK plays an indispensable role in various plant physiological processes. Previously, we showed that phosphorylation of MabZIP21 by MaMPK6-3 is involved in banana fruit ripening, but the regulatory mechanism by which MKK controls banana fruit ripening remains unclear. Here, ripening-induced MaMKK1 from banana fruit is characterized, and transiently overexpressing and silencing of MaMKK1 in banana fruit accelerates and inhibits fruit ripening, respectively, possibly by influencing phosphorylation and activity of MPK. MaMKK1 interacts with and phosphorylates MaMPK6-3 and MaMPK11-4 mainly at the pTEpY residues, resulting in MPK activation. MaMPK11-4 phosphorylates MabZIP21 to elevate its transcriptional activation ability. Transgenic tomato fruit expressing MabZIP21 ripen quickly with a concomitant increase in MabZIP21 phosphorylation. Additionally, MabZIP21 activates MaMPK11-4 and MaMKK1 transcription to form a regulatory feedback loop. Collectively, here we report a regulatory pathway of the MaMPK6-3/11-4-MabZIP21 module in controlling banana fruit ripening.


Assuntos
Musa , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Musa/genética , Musa/metabolismo , Frutas/genética , Fosforilação , Ativação Transcricional , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo , Etilenos/farmacologia
16.
Biopolymers ; 114(9): e23560, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37435944

RESUMO

Bioplastics were developed to overcome environmental problems that are difficult to decompose in the environment. This study analyzes Thai cassava starch-based bioplastics' tensile strength, biodegradability, moisture absorption, and thermal stability. This study used Thai cassava starch and polyvinyl alcohol (PVA) as matrices, whereas Kepok banana bunch cellulose was employed as a filler. The ratios between starch and cellulose are 10:0 (S1), 9:1 (S2), 8:2 (S3), 7:3 (S4), and 6:4 (S5), while PVA was set constant. The tensile test showed the S4 sample's highest tensile strength of 6.26 MPa, a strain of 3.85%, and a modulus of elasticity of 166 MPa. After 15 days, the maximum soil degradation rate in the S1 sample was 27.9%. The lowest moisture absorption was found in the S5 sample at 8.43%. The highest thermal stability was observed in S4 (316.8°C). This result was significant in reducing the production of plastic waste for environmental remediation.


Assuntos
Manihot , Musa , Celulose , Manihot/metabolismo , Musa/metabolismo , Álcool de Polivinil , Amido/metabolismo , Resistência à Tração
17.
Int J Biol Macromol ; 247: 125750, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37453644

RESUMO

Cold stress severely affects the banana fruit softening and de-greening, significantly inhibiting the ripening processes. However, the mechanism of ripening disorder caused by chilling injury (CI) in banana fruit remains largely unknown. Herein, MaIAA17-like, an Auxin/Indole-3-Acetic Acid (Aux/IAA) family member, was found to be highly related to the softening and de-greening in 'Fenjiao' banana. Its expression was rapidly increased with fruit ripening and then gradually decreased under normal ripening conditions (22 °C). Notably, cold storage severely repressed MaIAA17-like expression but was rapidly increased following ethephon treatment for ripening in fruits without CI. However, the expression repression was not reverted in fruits with serious CI symptoms after 12 days of storage at 7 °C. AtMaIAA17-like bound and regulated the activities of promoters of chlorophyll (MaNOL and MaSGR1), starch (MaBAM6 and MaBAM8), and cell wall (MaSUR14 and MaPL8) degradation-related genes. MaIAA17-like also interacted with ethylene-insensitive 3-binding F-box protein (MaEBF1), further activating the expression of MaNOL, MaBAM8, MaPL8, and MaSUR14. Generally, the transient overexpression of MaIAA17-like promoted fruit ripening by inducing the expression of softening and de-greening related genes. However, silencing MaIAA17-like inhibited fruit ripening by reducing the expression of softening and de-greening related genes. These results imply that MaIAA17-like modulates fruit ripening by transcriptionally upregulating the key genes related to fruit softening and de-greening.


Assuntos
Resposta ao Choque Frio , Musa , Musa/genética , Musa/metabolismo , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Etilenos/farmacologia , Etilenos/metabolismo
18.
Int J Biol Macromol ; 245: 125550, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37356689

RESUMO

Rapid ripening and softening due to cell wall polysaccharide degradation and disassembly pose major challenges in extending fruit storability. This study aimed to examine the efficacy of Opuntia ficus indica mucilage (OFIM) edible coating in minimizing softening in bananas under retail conditions. Mucilage was extracted from freshly harvested prickly pear cladodes and dried into a powder. Phenolic compounds in OFIM powder were quantified using liquid chromatography-mass spectrometry (LC-MS). OFIM concentrations (1, 2 and 3 % (w/v)) were prepared, and their physicochemical properties were examined. The prepared coatings were applied to harvested banana fruit by dipping and stored at room temperature for 12 days. During the experiment, several parameters were measured, including fruit weight loss, total soluble solids (TSS), titratable acidity (TA), peel color, pulp firmness, ethylene production, respiration rate, ion leakage, malondialdehyde (MDA) content, total chlorophyll and carotenoids, chlorophyll-degrading enzymes, protopectin content and water-soluble pectin (WSP) and softening-related enzymes in the peel. Results showed that mucilage treatments effectively delayed cell wall and chlorophyll degradation, as well as carotenoid accumulation, thus inhibiting ripening-associated processes compared to control fruit. OFIM-treated fruit exhibited significantly higher firmness, chlorophyll content, and TA, lower TSS content, ethylene production, respiration rate, MDA concentration, ion leakage and protopectin content than uncoated fruit. This suggests that OFIM edible coating has the potential to maintain quality and extend the shelf life of bananas by suppressing softening enzymes during storage.


Assuntos
Musa , Opuntia , Parede Celular/metabolismo , Clorofila/metabolismo , Etilenos/análise , Frutas/química , Musa/metabolismo , Opuntia/química , Polissacarídeos/farmacologia , Pós/metabolismo
19.
J Integr Plant Biol ; 65(9): 2036-2055, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37177912

RESUMO

Banana is a typical subtropical fruit, sensitive to chilling injuries and prone to softening disorder. However, the underlying regulatory mechanisms of the softening disorder caused by cold stress remain obscure. Herein, we found that BEL1-LIKE HOMEODOMAIN transcription factor 1 (MaBEL1) and its associated proteins regulate the fruit softening and ripening process. The transcript and protein levels of MaBEL1 were up-regulated with fruit ripening but severely repressed by the chilling stress. Moreover, the MaBEL1 protein interacted directly with the promoters of the cell wall and starch degradation-related genes, such as MaAMY3, MaXYL32, and MaEXP-A8. The transient overexpression of MaBEL1 alleviated fruit chilling injury and ripening disorder caused by cold stress and promoted fruit softening and ripening of "Fenjiao" banana by inducing ethylene production and starch and cell wall degradation. The accelerated ripening was also validated by the ectopic overexpression in tomatoes. Conversely, MaBEL1-silencing aggravated the chilling injury and ripening disorder and repressed fruit softening and ripening by inhibiting ethylene production and starch and cell wall degradation. MaABI5-like and MaEBF1, the two positive regulators of the fruit softening process, interacted with MaBEL1 to enhance the promoter activity of the starch and cell wall degradation-related genes. Moreover, the F-box protein MaEBF1 does not modulate the degradation of MaBEL1, which regulates the transcription of MaABI5-like protein. Overall, we report a novel MaBEL1-MaEBF1-MaABI5-like complex system that mediates the fruit softening and ripening disorder in "Fenjiao" bananas caused by cold stress.


Assuntos
Musa , Musa/genética , Musa/metabolismo , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo , Amido/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética
20.
J Nat Prod ; 86(6): 1571-1583, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37256742

RESUMO

Phenylphenalenones (PPs) are phytoalexins protecting banana plants (Musaceae) against various pathogens. However, how plants synthesize PPs is still poorly understood. In this work, we investigated the major secondary metabolites of developing seed coats of Musella lasiocarpa to determine if this species might be a good model system to study the biosynthesis of PPs. We found that PPs are major components of M. lasiocarpa seed coats at middle and late developmental stages. Two previously undescribed PP dimers (M-4 and M-6) and a group of unreported diarylheptanoid (DH) derivatives named musellins A-F (B-7, B-9, B-10, B-12, B-14, and B-15) were isolated along with 14 known compounds. Musellin D (B-12) and musellin F (B-15) contain the first reported furo[3,2-c]pyran ring and represent a previously undescribed carbon skeleton. The chemical structures of all new compounds were characterized by spectroscopic data, including NMR, HRESIMS, and ECD analysis. Plausible biosynthetic pathways for the formation of PPs and DHs are proposed.


Assuntos
Musa , Musaceae , Fenalenos , Diarileptanoides , Estrutura Molecular , Musa/metabolismo , Fenalenos/química , Polímeros , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...